Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using the G' Raman Cross-Section To Understand the Phonon Dynamics in Bilayer Graphene Systems

Identifieur interne : 001276 ( Main/Repository ); précédent : 001275; suivant : 001277

Using the G' Raman Cross-Section To Understand the Phonon Dynamics in Bilayer Graphene Systems

Auteurs : RBID : Pascal:12-0297897

Descripteurs français

English descriptors

Abstract

The G' (or 2D) Raman band of AB stacked bilayer graphene comes from a double resonance Raman (DRR) process and is composed of four peaks (P11, P12, P21, and P22). In this work, the integrated areas (IA) of these four peaks are analyzed as a function of the laser power for different laser lines. We show that the dependence of the IA of each peak on temperature is different for each distinct laser excitation energy. This special dependence is explained in terms of the electron-phonon coupling and the relaxation of the photon-excited electron. In this DRR process, the electron is scattered by an iTO phonon from a K to an inequivalent K' point of the Brillouin zone. Here, we show that this electron relaxes while in the conduction band before being scattered by an iTO phonon due to the short relaxation time of the excited electron, and the carrier relaxation occurs predominantly by emitting a low-energy acoustic phonon. The different combinations of relaxation processes determine the relative intensities of the four peaks that give rise to the G' band. Some peaks show an increase of their IA at the expense of others, thereby making the IA of the peaks both different from each other and dependent on laser excitation energy and on power level. Also, we report that the IA of the G' mode excited at 532 nm, shows a resonance regime involving ZO'phonons (related to the interlayer breathing mode in bilayer graphene systems) in which a saturation of what we call the P12 process occurs. This effect gives important information about the electron and phonon dynamics and needs to be taken into account for certain applications of bilayer graphene in the field of nanotechnology.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0297897

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Using the G' Raman Cross-Section To Understand the Phonon Dynamics in Bilayer Graphene Systems</title>
<author>
<name sortKey="Mafra, D L" uniqKey="Mafra D">D. L. Mafra</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departamento de Física, Universidade Federal de Minas Gerais</s1>
<s2>30123-970, Belo Horizonte</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Brésil</country>
<wicri:noRegion>30123-970, Belo Horizonte</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kong, J" uniqKey="Kong J">J. Kong</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sato, K" uniqKey="Sato K">K. Sato</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Tohoku University</s1>
<s2>Sendai 980-8578</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8578</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saito, R" uniqKey="Saito R">R. Saito</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Tohoku University</s1>
<s2>Sendai 980-8578</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8578</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dresselhaus, M S" uniqKey="Dresselhaus M">M. S. Dresselhaus</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="04">
<s1>Department of Physics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Araujo, P T" uniqKey="Araujo P">P. T. Araujo</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0297897</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0297897 INIST</idno>
<idno type="RBID">Pascal:12-0297897</idno>
<idno type="wicri:Area/Main/Corpus">001B10</idno>
<idno type="wicri:Area/Main/Repository">001276</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustical phonons</term>
<term>Bilayers</term>
<term>Brillouin zones</term>
<term>Conduction bands</term>
<term>Cross section</term>
<term>Cross sections</term>
<term>Electron-phonon interactions</term>
<term>Graphene</term>
<term>Indium oxide</term>
<term>Interlayers</term>
<term>Nanotechnology</term>
<term>Raman spectroscopy</term>
<term>Relaxation</term>
<term>Relaxation time</term>
<term>Resonance</term>
<term>Temperature dependence</term>
<term>Temperature effects</term>
<term>Tin oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Spectrométrie Raman</term>
<term>Section efficace</term>
<term>Coupe transversale</term>
<term>Phonon acoustique</term>
<term>Bicouche</term>
<term>Graphène</term>
<term>Résonance</term>
<term>Dépendance température</term>
<term>Effet température</term>
<term>Interaction électron phonon</term>
<term>Relaxation</term>
<term>Zone Brillouin</term>
<term>Bande conduction</term>
<term>Temps relaxation</term>
<term>Oxyde d'étain</term>
<term>Oxyde d'indium</term>
<term>Couche intermédiaire</term>
<term>Nanotechnologie</term>
<term>8105U</term>
<term>8105T</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Nanotechnologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The G' (or 2D) Raman band of AB stacked bilayer graphene comes from a double resonance Raman (DRR) process and is composed of four peaks (P
<sub>11</sub>
, P
<sub>12</sub>
, P
<sub>21</sub>
, and P
<sub>22</sub>
). In this work, the integrated areas (IA) of these four peaks are analyzed as a function of the laser power for different laser lines. We show that the dependence of the IA of each peak on temperature is different for each distinct laser excitation energy. This special dependence is explained in terms of the electron-phonon coupling and the relaxation of the photon-excited electron. In this DRR process, the electron is scattered by an iTO phonon from a K to an inequivalent K' point of the Brillouin zone. Here, we show that this electron relaxes while in the conduction band before being scattered by an iTO phonon due to the short relaxation time of the excited electron, and the carrier relaxation occurs predominantly by emitting a low-energy acoustic phonon. The different combinations of relaxation processes determine the relative intensities of the four peaks that give rise to the G' band. Some peaks show an increase of their IA at the expense of others, thereby making the IA of the peaks both different from each other and dependent on laser excitation energy and on power level. Also, we report that the IA of the G' mode excited at 532 nm, shows a resonance regime involving ZO'phonons (related to the interlayer breathing mode in bilayer graphene systems) in which a saturation of what we call the P
<sub>12</sub>
process occurs. This effect gives important information about the electron and phonon dynamics and needs to be taken into account for certain applications of bilayer graphene in the field of nanotechnology.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Using the G' Raman Cross-Section To Understand the Phonon Dynamics in Bilayer Graphene Systems</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MAFRA (D. L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KONG (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SATO (K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SAITO (R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DRESSELHAUS (M. S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ARAUJO (P. T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Departamento de Física, Universidade Federal de Minas Gerais</s1>
<s2>30123-970, Belo Horizonte</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, Tohoku University</s1>
<s2>Sendai 980-8578</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2883-2887</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000507963260390</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0297897</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The G' (or 2D) Raman band of AB stacked bilayer graphene comes from a double resonance Raman (DRR) process and is composed of four peaks (P
<sub>11</sub>
, P
<sub>12</sub>
, P
<sub>21</sub>
, and P
<sub>22</sub>
). In this work, the integrated areas (IA) of these four peaks are analyzed as a function of the laser power for different laser lines. We show that the dependence of the IA of each peak on temperature is different for each distinct laser excitation energy. This special dependence is explained in terms of the electron-phonon coupling and the relaxation of the photon-excited electron. In this DRR process, the electron is scattered by an iTO phonon from a K to an inequivalent K' point of the Brillouin zone. Here, we show that this electron relaxes while in the conduction band before being scattered by an iTO phonon due to the short relaxation time of the excited electron, and the carrier relaxation occurs predominantly by emitting a low-energy acoustic phonon. The different combinations of relaxation processes determine the relative intensities of the four peaks that give rise to the G' band. Some peaks show an increase of their IA at the expense of others, thereby making the IA of the peaks both different from each other and dependent on laser excitation energy and on power level. Also, we report that the IA of the G' mode excited at 532 nm, shows a resonance regime involving ZO'phonons (related to the interlayer breathing mode in bilayer graphene systems) in which a saturation of what we call the P
<sub>12</sub>
process occurs. This effect gives important information about the electron and phonon dynamics and needs to be taken into account for certain applications of bilayer graphene in the field of nanotechnology.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A05T</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Spectrométrie Raman</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Raman spectroscopy</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Section efficace</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Cross sections</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Coupe transversale</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Cross section</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Corte transverso</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Phonon acoustique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Acoustical phonons</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Bicouche</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Bilayers</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Graphène</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Graphene</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Graphene</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Résonance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Resonance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Interaction électron phonon</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electron-phonon interactions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Relaxation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Relaxation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Zone Brillouin</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Brillouin zones</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Bande conduction</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Conduction bands</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Temps relaxation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Relaxation time</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Couche intermédiaire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Interlayers</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Nanotechnologie</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Nanotechnology</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>8105U</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>226</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001276 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001276 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0297897
   |texte=   Using the G' Raman Cross-Section To Understand the Phonon Dynamics in Bilayer Graphene Systems
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024